A Graphene Surface Force Balance
نویسندگان
چکیده
We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm(2)). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems.
منابع مشابه
Rough contact is not always bad for interfacial energy coupling.
For the first time we report that by introducing sub-nm roughness on a Si surface, the energy coupling between a single layer graphene (SLG) and the Si substrate can be improved substantially. This is contrary to the traditional view that a rough surface contact will weaken the energy coupling, rather than improve it. Periodical grooves of 2 nm width and 2 nm spacing are introduced on the surfa...
متن کاملWater tribology on graphene.
Classical experiments show that the force required to slide liquid drops on surfaces increases with the resting time of the drop, t(rest), and reaches a plateau typically after several minutes. Here we use the centrifugal adhesion balance to show that the lateral force required to slide a water drop on a graphene surface is practically invariant with t(rest). In addition, the drop's three-phase...
متن کاملControllable Nanotribological Properties of Graphene Nanosheets
Graphene as one type of well-known solid lubricants possesses different nanotribological properties, due to the varied surface and structural characteristics caused by different preparation methods or post-processes. Graphene nanosheets with controllable surface wettability and structural defects were achieved by plasma treatment and thermal reduction. The nanotribological properties of graphen...
متن کاملFrictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive m...
متن کاملGraphene-like Nano-Sheets/36° LiTaO3 Surface Acoustic Wave Hydrogen Gas Sensor
Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to differen...
متن کامل